Predicting floods with Flickr tags

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting floods with Flickr tags

Increasingly, user generated content (UGC) in social media postings and their associated metadata such as time and location stamps are being used to provide useful operational information during natural hazard events such as hurricanes, storms and floods. The main advantage of these new sources of data are twofold. First, in a purely additive sense, they can provide much denser geographical cov...

متن کامل

Inducing Ontology from Flickr Tags

In this paper, we describe some promising initial results in inducing ontology from the Flickr tag vocabulary, using a subsumption-based model. We describe the utility of faceted ontology as a supplement to a tagging system and present our model and results. We propose a revised, probabilistic model using seed ontologies to induce faceted ontology, and describe how the model can integrate into ...

متن کامل

Exploiting Flickr Tags and Groups for Finding Landmark Photos

Many people take pictures of different city landmarks and post them to photo-sharing systems like Flickr. They also add tags and place photos in Flickr groups, created around particular themes. Using tags, other people can search for representative landmark images of places of interest. Searching for landmarks using tags results into many non-landmark photos and provides poor landmark summary f...

متن کامل

Exploiting User-supplied Tags for Flickr Photos Annotation

The popularity of photo-sharing websites like Flickr give us a chance to observe what ordinary users do in their daily life. Particularly, Flickr allows the users to provide personalized tags when uploading photos, and then we can annotate Flickr photos using user-supplied tags. This paper proposes an approach to automatically annotate Flickr photos by exploiting user-supplied tags. Usersupplie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PLOS ONE

سال: 2017

ISSN: 1932-6203

DOI: 10.1371/journal.pone.0172870